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ABSTRACT
Motivation: In genomic studies, thousands of features are
collected on relatively few samples. One of the goals of
these studies is to build classifiers to predict the outcome of
future observations. There are three inherent steps to this
process: feature selection, model selection, and prediction
assessment. With a focus on prediction assessment, we com-
pare several methods for estimating the ’true’ prediction error
of a prediction model in the presence of feature selection.
Results: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estimates are seriously biased. In these small samp-
les, leave-one-out (LOOCV), 10-fold cross-validation (CV),
and the .632+ bootstrap have the smallest bias for diago-
nal discriminant analysis, nearest neighbor, and classification
trees. LOOCV and 10-fold CV have the smallest bias for linear
discriminant analysis. Additionally, LOOCV, 5- and 10-fold CV,
and the .632+ bootstrap have the lowest mean square error.
The .632+ bootstrap is quite biased in small sample sizes
with strong signal to noise ratios. Differences in performance
among resampling methods are reduced as the number of
specimens available increase.
Supplementary Information: A complete compilation of results
is available in Molinaro et al. (2005). R code for simulations
and analyses is available from the authors.
Contact: annette.molinaro@yale.edu

1 INTRODUCTION
In genomic experiments one frequently encounters high
dimensional data and small sample sizes. Microarrays simul-
taneously monitor expression levels for several thousands
of genes. Proteomic profiling studies using SELDI-TOF
(surface-enhanced laser desorption and ionization time-of-
flight) measure size and charge of proteins and protein frag-
ments by mass spectroscopy, and result in up to 15,000
intensity levels at prespecified mass values for each spectrum.
Sample sizes in such experiments are typically less than 100.
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In many studies observations are known to belong to pre-
determined classes and the task is to build predictors or
classifiers for new observations whose class is unknown.
Deciding which genes or proteomic measurements to include
in the prediction is calledfeature selectionand is a cru-
cial step in developing a class predictor. Including too many
noisy variables reduces accuracy of the prediction and may
lead to over-fitting of data, resulting in promising but often
non-reproducible results (Ransohoff, 2004).

Another difficulty is model selection with numerous clas-
sification models available. An important step in reporting
results is assessing the chosen model’s error rate, or gene-
ralizability. In the absence of independent validation data, a
common approach to estimating predictive accuracy is based
on some form of resampling the original data, e.g., cross-
validation. These techniques divide the data into a learning
set and a test set and range in complexity from the popular
learning-test split tov-fold cross-validation, Monte-Carlov-
fold cross-validation, and bootstrap resampling. Few compa-
risons of standard resampling methods have been performed
to date, and all of them exhibit limitations that make their
conclusions inapplicable to most genomic settings. Early
comparisons of resampling techniques in the literature are
focussed on model selection as opposed to prediction error
estimation (Breiman and Spector, 1992; Burman, 1989). In
two recent assessments of resampling techniques for error
estimation (Braga-Neto and Dougherty, 2004; Efron, 2004),
feature selection was not included as part of the resampling
procedures, causing the conclusions to be inappropriate for
the high-dimensional setting.

We have performed an extensive comparison of resamp-
ling methods to estimate prediction error using simulated
(large signal to noise ratio), microarray (intermediate signal
to noise ratio) and proteomic data (low signal to noise ratio),
encompassing increasing sample sizes with large numbers
of features. The impact of feature selection on the perfor-
mance of various cross validation methods is highlighted.
The results elucidate the ’best’ resampling techniques for
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future research involving high dimensional data to avoid
overly optimistic assessment of the performance of a model.

2 METHODS
In the prediction problem, one observesn independent and
identically distributed (i.i.d.) random variablesO1, . . . , On

with unknown distributionP . Each observation inO consists
of an outcomeY with rangeY and a l-vector of mea-
sured covariates, or features,X with rangeX , such that
Oi = (Xi, Yi), i = 1, . . . , n. In microarray experiments
X includes gene expression measurements, while in proteo-
mic data, it includes the intensities at the mass over charge
(m/z) values.X may also contain covariates such as a pati-
ent’s age and/or histopathologic measurements. The outcome
Y may be a continuous measure such as months to disease or
a categorical measure such as disease status.

The goal in class prediction is to build a rule implementing
the information fromX in order to predictY . The inten-
tion is that by building this rule based on the observations
O1, . . . , On a future unobserved outcomeY0 can be predic-
ted based on its corresponding measured featuresX0. If the
outcome is continuous, then the rule, or predictor,ψ is defi-
ned as a mapping from the feature spaceX onto the real line,
i.e.ψ : X → IR. Consequently,̂y = ψ(x) denotes the predic-
ted outcome based on the observedX. Such predictors can be
built via regression (linear and non) or recursive binary parti-
tioning such as Classification and Regression Trees (CART)
(Breimanet al., 1984). If the outcomeY is categorical it assu-
mes one of K values. In this case, the ruleψ partitions the
feature spaceX into K disjoint and exhaustive groupsGk,
wherek = 1, . . . ,K, such thatŷ = k if x ∈ Gk. Stan-
dard statistical analyses include linear discriminant analysis
(LDA) and diagonal discriminant classifiers (DDA), nearest
neighbors (NN), and CART, as well as aggregate classifiers.
Thorough discussions of the prediction problem and available
algorithms can be found in Breimanet al.(1984); McLachlan
(1992); Ripley (1996); Hastieet al. (2003).

The ruleψ can be written asψ(· | Pn), wherePn denotes
the empirical distribution ofO and reflects the dependence
of the built rule on the observed data. Loss functions may
be employed to quantify the performance of a given rule.
A common loss function for a continuous outcomeY is the
squared error loss,L(Y, ψ) = (Y − ψ(X))2. With a cate-
gorical outcomeY , a popular choice is the indicator loss
function,L(Y, ψ) = I(Y 6= ψ(X)). A loss function could
also incorporate differential misclassification costs (Breiman
et al., 1984).

For either type of outcome, the expected loss, orrisk, is
defined as:

θ̃ = R(ψ, P ) = EP [L(Y, ψ)] =

Z
L(y, ψ(x))dP (x, y). (1)

The rule in (1) is constructed and evaluated upon the dis-
tribution P , as such,̃θ is referred to as theasymptotic risk.

However, in realityP is unknown, thus, the rule based upon
the observationsO1, . . . , On has an expected loss, orcondi-
tional risk (also known as the generalization error), defined
as:

θ̃n = R(ψ(·|Pn), P ) =
∫
L(y, ψ(x|Pn))dP (x, y). (2)

There are two impetuses for evaluating the conditional risk:
model selection and performance assessment. In model selec-
tion, the goal is to find the one which minimizes the conditio-
nal risk over a collection of potential models. In performance
assessment, the goal is to estimate the generalization error for
a given model, i.e., assess how well it predicts the outcome
of an observation not included inO.

In an ideal setting an independent data set would be availa-
ble for the purposes of model selection and estimating the
generalization error. Typically, however, one must use the
observed sampleO for model building, selection, and perfor-
mance assessment. The simplest method for estimating the
conditional risk is with theresubstitutionor apparenterror:

θ̂RS
n = R(ψ(·|Pn), Pn) =

∫
L(y, ψ(x|Pn))dPn(x, y). (3)

Here each of then observations are used for construc-
ting, selecting, and, subsequently, evaluating the predic-
tion error ofψ. Consequently, the resubstitution risk esti-
mate tends to underestimate the generalization error (Efron,
1983; McLachlan, 1992). To alleviate this biased estimation,
resampling methods such as cross-validation or bootstrap-
ping can be employed. In the next section, we describe
these techniques and their implications in the framework of
prediction error.

2.1 Resampling Methods
In the absence of a large, independent test set, there are
numerous techniques for assessing prediction error by imple-
menting some form of partitioning or resampling of the
original observed dataO. Each of these techniques involves
dividing the data into alearning setand atest set. For purpo-
ses of model selection the learning set may further be divided
into a training setand avalidation set. We will focus solely
on the partitioning of the data into learning and test sets for
the express purpose of estimating the generalization error.

To enhance a general discussion of resampling methods we
define a binary randomn-vector,Sn ∈ {0, 1}n, which splits
the observations into the desired subsets (Molinaroet al.,
2004). A realization ofSn = (Sn,1, . . . , Sn,n) prescribes a
particular split of the entire data set ofn observations into
a learning set,{i ∈ {1, . . . , n} : Sn,i = 0}, and a test
set,{i ∈ {1, . . . , n} : Sn,i = 1}. Let p be the proportion
of observations in the test set. The empirical distributions of
the learning and test sets are denoted byP 0

n,Sn
andP 1

n,Sn
,

respectively. Importantly,Sn is independent of the empiri-
cal distribution of the complete data set ofn observations
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Pn and the particular distribution ofSn defines the type
of resampling method. GivenSn, the performance of any
given estimatorψ(·|Pn) can be assessed via theresampling
conditional riskestimate

θ̂n(1−p) = ESn

∫
L(o, ψ(· | P 0

n,Sn
))dP 1

n,Sn
(o), (4)

whereSn refers to binary split vectors for the entire data set
of n observations andp =

∑
i Si,n/n is the proportion ofn

observations in the test set.
There are several considerations when selecting a resamp-

ling method. The first is sample sizen. For v-fold cross-
validation and bootstrap, Dudoit and van der Laan (2003)
have shown that asn → ∞ (and consequentlynp → ∞)
asymptotic optimality is achieved. However, no such results
exist for finite samples. Other considerations are on the pro-
portionp of the observations for the test set and the number
of times the estimate is calculated. We address these conside-
rations in the following sections and refer the reader to more
detailed discussions in McLachlan (1992) and Davison and
Hinkley (1997).

2.1.1 Split Sample This popular resampling method, also
known as thelearning-test splitor holdout method(McLach-
lan, 1992), entails a single partition of the data into a learning
set and a test set based on a predeterminedp. For example,
p = 1/3 allots two-thirds of the data to the learning set and
one third to the test set. The distribution ofSn places mass
1/2 on two binary vectors which assign then observations
to the learning and test sets. The advantage of this method is
the ease of computation. Also, since the classifier is develo-
ped only once, a completely specified algorithm for classifier
development need not be available; the development can be
more informal and subjective. There are two potential sources
of bias inherent in this method: bias introduced by each indi-
vidual observation contributing only to the learning or test
set; and, bias due to a small learning set whereas both featu-
res and classifiers selected depend solely on the learning set.
Because the learning set is smaller than the full data set, the
test set error for a model built on the training set will tend to
over-estimate the unknown generalization error for a model
built on the full dataset.

2.1.2 v-fold Cross-Validation This method randomly
assigns then observations to one ofv partitions such that
the partitions are near equal size. Subsequently, the learning
set contains all but one of the partitions which is labeled the
test set. The generalization error is assessed for each of the
v test sets and then averaged overv. In this method, the dis-
tribution ofSn puts mass1/v on thev binary vectors which
assign each of then observations to one of thev partitions.
The proportionp is approximately equal to1/v. Both p and
the number of averages can adversely or positively affect this
estimate of error. For example, a largerv (e.g., v = 10)
results in a smaller proportionp in the test set; thus, a higher

proportion in the learning set decreasing the bias. In addi-
tion, the number of averages is equivalent tov and thus, may
additionally decrease the bias.

2.1.3 Leave-One-Out Cross-Validation (LOOCV)This is
the most extreme case ofv-fold cross-validation. In this
method each observation is individually assigned to the test
set, i.e.,v = n andp = 1/n (Lachenbruch and Mickey, 1968;
Geisser, 1975; Stone, 1974, 1977). The distribution ofSn pla-
ces mass1/n on then binary vectors which assign each of the
n observations to the learning and test sets. LOOCV and the
correspondingp = 1/n represent the best example of a bias-
variance trade-off. It tends toward a small bias with elevated
variance. In model selection, LOOCV has performed poorly
compared tov-fold cross-validation (Breiman and Spector,
1992). Due to the computational burden, LOOCV has not
been a favored method for large samples and its behavior
in estimating generalization error has not been thoroughly
studied.

2.1.4 Monte Carlo Cross-Validation (MCCV)MCCV
randomly splits the sample into a learning and test set nume-
rous times (e.g., 20, 50, or 1000 iterations). For each split
np = n(1/v) of the observations are labeled as the test set
andn(1 − p) = n(1 − 1/v) as the learning set. For exam-
ple, in MCCV with v = 10 each of50 iterations allot10%
of the data to the test set and90% to the learning set. The
generalization error is assessed for each of the50 test sets
and subsequently averaged over the50 iterations. The distri-
bution ofSn puts mass1/

(
n
np

)
on each of the binary vectors

representing one split into a learning and test set. As the num-
ber of iterations increase the computational burden of MCCV
is quite large. However, unless the iterations of random splits
approaches infinity, the chance that each observation is inclu-
ded in a learning set and a test set (over all iterations) is small
introducing a similar bias to that of the split sample approach
(i.e., when each observation is either in the learning set or test
set).

2.1.5 .632+ Bootstrap Several variations of the bootstrap
have been introduced to estimate the generalization error. The
leave-one-out bootstrap (θ̂BS

n ) is based on a random sample
drawn with replacement fromn observations (Efron, 1983;
Efron and Tibshirani, 1993). For each draw the observa-
tions left out (approximately.368n) serve as the test set.
The learning set has approximately.632n unique observa-
tions which leads to an overestimation of the prediction error
(i.e., a decrease in the learning set leads to an increase in
the bias). To correct for this two estimators have been sug-
gested: the .632 bootstrap and the .632+ estimator. Both
correct by adding the underestimated resubstitution error
θ̂RS

n , ωθ̂BS
n + (1− ω)θ̂RS

n . For the .632 bootstrap the weight
ω is constant (ω = .632), whereas for the .632+ bootstrapω
is determined based on the ”no-information error rate” (Efron
and Tibshirani, 1997). We focus on the latter as it is the most
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used in the literature and the most robust across different
algorithms (Efron and Tibshirani, 1997).

2.2 Algorithms
Predictions of outcomes based on the observedX can employ
parametric or non-parametric algorithms. If the outcome is
continuous, predictors can be built using regression models
or recursive binary partitioning like CART. If the outcome is
categorical, algorithms which partition the feature spaceX
into disjoint and exhaustive groups are used. In this manus-
cript, we limit our discussion to the classification of binary
outcomes, i.e.,Y = 0 or Y = 1, and thus, evaluate methods
for the estimation of prediction error in the context of the
following classification algorithms.

We calculate the LDA with thelda function in theMASS
library of the statistical packageR (Venables and Ripley,
1994; Ihaka and Gentlemen, 1996). We use the function
dlda in the library supclust in R to implement DDA
(Dettling and Maechler, 2004). The librarysupclust also
houses the functionnnr for NN. CART classification is
obtained using the library and functionrpart in R(Breiman
et al., 1984; Therneau and Atkinson, 1997)

3 ANALYSIS
The goal of this analysis is to ascertain differences between
resampling methods in the estimation of generalization error
(presently, limited to the classification problem) in the pre-
sence of feature selection. We evaluate the influence of sam-
ple size, parametric to non-parametric classification methods,
and large feature spaces on each resampling method’s ability
to estimate the resampling conditional riskθ̂n(1−p) (Eq. 4)
compared to that of the ”true” conditional risk̃θn (Eq. 2). As
such, a range of sample sizes (n = 40, n = 80, andn = 120),
classification algorithms (LDA, DDA, NN, and CART), and
data sets (simulated, microarray, and proteomic; see Sections
3.1–3.3) are utilized. Prior to discussing results, the general
strategy for estimating the risks is explained followed by the
specifics of each data set.

Each data set consists ofN observations withN1 cases and
N0 controls andl measured features. Forr = 1, . . . , R repe-
titions, a random sample of sizen stratified by case/control
status is selected fromN such that the number of cases in
the subsample (n/2) equals the number of controls. The stra-
tification allows for equal representation of both cases and
controls such that classification algorithms relying on majo-
rity consensus are not biased toward either (Quackenbush,
2004). This random sample, or subsample, plays two roles.
First, it serves as a sample from which the resampling con-
ditional risk θ̂n(1−p) can be estimated. This is accomplished
by splitting the subsample into a learning and test set cor-
responding to each of the resampling methods. For each
r, an estimate of̂θn(1−p) is obtained for each resampling
method with all four algorithms. In reality the distributionP

of the observed dataO is unknown and thus, so is the ”true”
conditional risk. In order to estimatẽθn in Eq. 2 we will
use the complete observed data. As such, the subsample’s
second role is to serve as the learning set and the remaining
N−n observations as the test set for an approximation of the
conditional riskθ̃n.

Given the high-dimensional structure of each data set (i.e.,
large l), feature selection is an important task administered
before running any of the algorithms. Feature selection must
occur based on the learning set within each resampling, other-
wise additional bias is introduced (Simonet al., 2003). This
correct approach to feature selection within cross-validation
has been referred to ashonestor complete(Quackenbush,
2004). There are many methods available for feature selec-
tion, heret-tests are used. Initially components ofX with
the largest10 absolute valuet-test statistics are considered.
Subsequently, the largest20 are discussed.

All simulations and analyses were implemented inR(Ihaka
and Gentlemen, 1996).

3.1 Simulated Data
The simulated data sets are generated as described in Bura
and Pfeiffer (2003). Each data set containsN = 300 obser-
vations with750 covariates, representing patients and genes,
respectively. Half of the observations (i.e., 150) are labeled
controls (Y = 0) and half cases (Y = 1). Of the750 genes,8
are associated with disease and the others are non-predictive.
The controls are simulated from a multivariate normal distri-
bution with a mean of0 and covariance matrixΣ. The cases
have98% non-differentially expressed genes which are gene-
rated from the sameN(0,Σ) as the controls. The2% of the
genes that are differentially expressed are generated from a
mixture of two multivariate normals with meansµ1 andµ2

and covariance structureΣ. The mixing probability is0.5.
The covariance matrixΣ = (σij) has a block structure with
σij = 0.2 for |j − i| ≤ 5 and zero otherwise. Estimates of
θ̂n(1−p) andθ̃n are based on learning samples of size40, 80,
and120 and test sets of size260, 220, and180, respectively.

3.2 Lymphoma and Lung Data sets
The microarray data sets are both publicly available. The first
focuses on diffuse large-B-cell lymphoma (Rosenwaldet al.,
2002). In this study there are7399 genes on the microarray
and240 patients. For the purposes of this analysis, the out-
come variable represents the lymphoma subtype: activated
B-cell for Y = 0 and germinal-center B-cell forY = 1.
This is an example of a moderate signal to noise ratio data
set as the subgroups do not separate perfectly based on the
microarray observations (Wrightet al., 2003). Estimates of
θ̂n(1−p) and θ̃n are based on learning samples of size40,
80, and120 and test sets of size200, 160, and120, respec-
tively. The second study uses oligonucleotide microarrays
to measure12601 transcript sequences for186 lung tumor
samples (Bhattacharjeeet al., 2001). For our analysis, the
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outcome represents the139 adenocarcinomas asY = 0 and
the remaining47 tumors asY = 1.

3.3 Proteomic Ovarian Data set
The proteomic data set consists of 164 SELDI-TOF measu-
rements from NCI/Mayo Clinic serum samples. These data
are part of a study designed to validate previously identified
proteomic markers for ovarian cancer. The readings are from
fraction 4, IMAC30 ProteinChip arrays, read at high and low
energy settings in a PCS4000 ProteinChip Reader (Ciphergen
Biosystems, Inc., Fremont, CA). The spectra were exter-
nally calibrated for mass, internally normalized for intensity
using total ion current, and baseline subtracted. Peaks were
manually selected and the intensity recorded.

Of then = 164 observations, 45 are ovarian cancer cases
and 119 controls. Estimates ofθ̂n(1−p) and θ̃n are based on
learning samples of size40 and80 and test sets of size144
and104, respectively. Given the nature of proteomic data as
well as the naive algorithms implemented this will serve as a
low signal to noise example.

3.4 Results
To compare the resampling methods in Section 2.1, con-
ditional risk estimates for each method are calculated and
compared to each other and the truth (i.e., the conditional
risk). This evaluation is based on the mean squared error
(MSE) and bias, calculated as follows:

MSE =
1
r

R∑
r=1

(θ̂n,r − θ̃n,r)2

Bias =
1
r

R∑
r=1

(θ̂n,r − θ̃n,r),

whereθ̂n,r is the resampling conditional risk and̃θn,r is the
conditional risk for therth repetition. In all results the total
number of repetitions is set at100, i.e.,R = 100.

There were several attempts to examine the effect of vary-
ing p on those resampling methods which allow user-defined
test set proportions (i.e.,v-fold cross-validation, MCCV, and
split sample). Forv-fold cross validation,2, 5, and10-fold
were explored. In MCCV, bothp and the number of MCCV
repetitions affect the estimation, thus, test set proportions
of p = 0.5, p = 0.2, p = 0.1 as well as repetitions of
20, 50, and1000 were run. In split sample estimation test set
proportions of bothp = 1/3 andp = 1/2 were examined to
assess the bias/variance trade-off.

Due to space limitations, all results are discussed but only a
limited number of tables can be displayed. The interested rea-
der is referred to Molinaroet al. (2005) for a comprehensive
compilation of results. The MCCV results are not included
below as the only noticeable improvement overv-fold CV
is a slight decrease in variance. Additionally, the advantage
of increasing the MCCV iterations from 20 to 50 to 1000 is

minimal.

Simulation Study Results. For n = 40, LOOCV and 10-
fold CV have the smallest MSE and bias followed by 5-fold
CV and then .632+ (Table 1). The largest MSE and bias occur
with 2-fold CV and Split Sample withp = 1/2. Forn = 80
andn = 120 the differences among these methods diminish.
For n = 40 andn = 80, .632+ has the smallest standard
deviation followed by 10-fold CV, LOOCV, and 5-fold CV.
The only exception is for LDA and NN atn = 80, when
LOOCV and 10-fold CV have the smallest. Atn = 120, the
differences among these methods diminish.

Lymphoma and Lung Study Results. In the lymphoma
study, for n = 40, 80, and 120, .632+, LOOCV, 5- and
10-fold CV have the smallest MSE and bias. The two split

Table 1. Prediction Error Estimates.The estimatêθn (col 4) and standard
deviation (col 5) based on learning sample of size40. The estimatẽθn (rows
1-4) and standard deviation based on the remaining 260 observations. Bias
(col 6) and MSE (col 7) reported for each resampling technique (col 1) and
algorithm (col 3). The ten genes with largestt-statistics used in algorithms.
Minimums inbold.

Estimator p Algorithm Est St.Dev Bias MSE
LDA 0.078 0.093

θ̃n 0.87 DDA 0.160 0.086
NN 0.042 0.084

CART 0.121 0.133
LDA 0.357 0.126 0.279 0.097

0.5 DDA 0.342 0.106 0.182 0.052
NN 0.277 0.135 0.235 0.077

CART 0.430 0.121 0.309 0.134
LDA 0.161 0.127 0.083 0.017

v-fold 0.2 DDA 0.208 0.086 0.048 0.012
CV NN 0.108 0.102 0.066 0.011

CART 0.284 0.117 0.163 0.055
LDA 0.118 0.120 0.040 0.008

0.1 DDA 0.177 0.087 0.017 0.007
NN 0.078 0.102 0.036 0.005

CART 0.189 0.104 0.068 0.024
LDA 0.092 0.115 0.014 0.008

LOOCV 0.025 DDA 0.164 0.096 0.004 0.007
NN 0.058 0.103 0.016 0.005

CART 0.146 0.125 0.025 0.018
LDA 0.205 0.184 0.127 0.053

0.333 DDA 0.243 0.138 0.083 0.034
NN 0.145 0.169 0.103 0.044

SPLIT CART 0.371 0.174 0.25 0.121
LDA 0.348 0.185 0.270 0.113

0.5 DDA 0.344 0.139 0.184 0.062
NN 0.265 0.177 0.223 0.086

CART 0.438 0.155 0.317 0.147
LDA 0.274 0.084 0.196 0.047

.632+ DDA 0.286 0.074 0.126 0.028
50 reps ≈ .368 NN 0.200 0.070 0.158 0.032

CART 0.387 0.080 0.266 0.100
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samples and 2-fold CV have the largest MSE and bias. Simi-
lar to the simulation study, .632+ has the smallest standard
deviation across the algorithms and sample sizes, while both
Split Samples do by far the worst. Partial results are shown in
Table 2. The results from the lung study are very similar and
thoroughly discussed in Molinaroet al. (2005).

Ovarian Study Results.For n = 40 to n = 80, LOOCV
and .632+ have the smallest MSE followed by 5- and 10-
fold CV. As for bias, 10-fold CV, .632+, and LOOCV vie for
the smallest. The largest MSE and bias occurs with the Split
Samples and 2-fold CV. Again .632+ has the smallest stan-
dard deviation across algorithms and sample sizes; however,
the discrepancy is much smaller than in the other two studies.
The Split Samples have the largest standard deviations. Par-
tial results are shown in Table 3.

All analyses were repeated with selecting the20 features
having the largestt-test statistics. The ranking of the resamp-
ling methods remained the same (Supplementary material).

Repeated Resampling.We examined the effect of repeated
resampling on 2-,5-, and 10-fold CV and Split Sample with
p = 1/3 for the three samples sizes and four algorithms.
Each was repeated 10 and 30 times. Interestingly, there was
minimal improvement when increased from 10 to 30 repeats.
However when increasing repeats from 1 to 10 (or 30), all
standard deviations decreased (up to50%). The MSE either
decreased (up to35%) or stayed similar, which was also true
for the bias except in Split Sample for n=40 and 2-fold CV
for n=40 and n=80 (Supplementary material).

Dimensionality of Feature Space.In the simulations of
Efron and Tibshirani (1997), .632+ outperformed LOOCV
and 10-fold CV. For example, in their experiment 22, with
10 variables and 36 patients, the MSE was .040 for .632+
and .058 for LOOCV. However, in our simulations with n=40
(Table 1) .632+ does not fair so well, particularly with regard
to bias. To investigate the differences between our simula-
tions and those in Efron and Tibshirani we decreased the
dimensions of the feature space to a total of 10 variables
instead of 750. The results are shown in Table 4 for the
sample size of 40. With low dimension the large bias of the
bootstrap is substantially reduced and the .632+ does as well
or better than LOOCV and 10-fold CV.

Resampling with andwithout Replacement.To understand
the ramification of resampling with replacement as it pertains
to the bootstrap estimates we compared the leave-one-out
bootstrap estimate (Section 2.1.5) to the 3-fold MCCV. The
3-fold MCCV randomly selects.666n for the learning set and
and .333n for the test set. This is repeated numerous times
and the estimates averaged. Therefore the 3-fold MCCV is
equivalent to the leave-one-out bootstrap except it employs

Table 4. Prediction Error Estimates without feature selection. To assess
the effect of no feature selection on resampling methods estimation, only
10 genes were simulated and all 10 used in estimation. Results based on
learning sample of40 and a test sample of260. Absolute minimums inbold.

Estimator p Algorithm Est St.Dev Bias MSE
LDA 0.026 0.028

θ̃n 0.87 DDA 0.073 0.058
NN 0.010 0.017

CART 0.099 0.092
LDA 0.067 0.060 0.041 0.005

0.5 DDA 0.106 0.079 0.033 0.009
NN 0.011 0.025 0.001 0

CART 0.304 0.088 0.205 0.063
LDA 0.034 0.045 0.008 0.002

v-fold 0.2 DDA 0.085 0.049 0.012 0.003
CV NN 0.011 0.024 0.001 0

CART 0.158 0.072 0.059 0.012
LDA 0.032 0.041 0.006 0.001

0.1 DDA 0.074 0.048 0.001 0.002
NN 0.010 0.021 0 0

CART 0.118 0.063 0.019 0.006
LDA 0.028 0.040 0.002 0.001
DDA 0.072 0.049 -0.001 0.002

LOOCV 0.025 NN 0.010 0.022 0 0
CART 0.110 0.075 0.011 0.006
LDA 0.046 0.076 0.020 0.005

0.333 DDA 0.066 0.085 -0.007 0.008
NN 0.007 0.029 -0.003 0.001

SPLIT CART 0.265 0.116 0.166 0.047
LDA 0.073 0.078 0.047 0.007

0.5 DDA 0.093 0.099 0.020 0.013
NN 0.010 0.028 0 0.001

CART 0.308 0.114 0.209 0.071
LDA 0.037 0.036 0.011 0.001

.632+ DDA 0.085 0.036 0.012 0.003
50 reps ≈ .368 NN 0.008 0.016 -0.002 0

CART 0.160 0.034 0.061 0.010

resamplingwithout replacement. Table 5 displays the Simu-
lation Study results for the two estimates using50 iterations
for both. Interestingly, the bias and MSE for the leave-one-
out bootstrap are roughly double that of 3-fold MCCV. The
only two distinct differences between the two methods are the
replicate copies in the learning set inherent in the bootstrap
estimate and the fact thaton average.632n unique observati-
ons are in the learning sample for the leave-one-out bootstrap
whereas there arealways .666n in the learning sample for
the 3-fold MCCV. Both of these factors may contribute to the
increase in bias and MSE.

4 DISCUSSION
Estimation of prediction error when confronted with a multi-
tude of covariates and small sample sizes is a relatively new
problem. Feature selection, sample size, and signal to noise
ratio have important influences on the relative performance of
resampling methods. We have evaluated resampling methods
for use in high dimensional classification problems using a

6
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Table 2. Lymphoma Study Results. Comparison of resampling method’s MSE, bias, and standard deviation. Results shown are for the DDA algorithm using
the top10 genes as ranked by correspondingt-tests.

Resampling n = 40 n = 80 n = 120
Method St.Dev Bias MSE St.Dev Bias MSE St.Dev Bias MSE

2-fold CV 0.085 0.038 0.01 0.043 0.002 0.004 0.031 0.0 0.003
5-fold CV 0.07 0.004 0.007 0.045 -0.008 0.005 0.032 -0.006 0.003
10-fold CV 0.063 -0.007 0.006 0.036 -0.009 0.003 0.031 -0.006 0.003

LOOCV 0.072 -0.019 0.008 0.04 -0.013 0.004 0.033 -0.004 0.003
SPLIT1/3 0.119 0.001 0.017 0.071 0.0 0.007 0.059 -0.004 0.005
SPLIT1/2 0.117 0.037 0.018 0.058 0.001 0.005 0.046 -0.001 0.004

.632+ 0.049 -0.006 0.004 0.025 -0.02 0.003 0.018 -0.015 0.002

Table 3. Ovarian Study Results. Comparison of resampling method’s MSE, bias, and standard deviation. Results shown are for the DDA algorithm using the
top10 genes as ranked by correspondingt-tests.

Resampling n = 40 n = 80

Method St.Dev Bias MSE St.Dev Bias MSE
2-fold CV 0.098 0.026 0.015 0.05 0.004 0.007
5-fold CV 0.082 0.0 0.012 0.039 -0.005 0.006
10-fold CV 0.082 -0.01 0.011 0.036 -0.005 0.005

LOOCV 0.079 -0.004 0.011 0.037 -0.004 0.006
SPLIT1/3 0.133 -0.002 0.022 0.075 -0.009 0.009
SPLIT1/2 0.113 0.027 0.018 0.071 0.013 0.01

.632+ 0.075 -0.006 0.011 0.028 -0.014 0.005

range of sample sizes, algorithms, and signals. Some general
conclusions may be summarized as follows:

1. With small sample sizes, the Split Sample method
and 2-fold CV perform very poorly. This poor perfor-
mance is primarily due to a large positive bias resulting
from use of a reduced training set size which severely
impairs its ability to effectively select features and fit a
model. The large bias contributes to a large MSE.

2. LOOCV generally performs very well with regard to
MSE and bias. The only exception is when an unsta-
ble classifier (e.g., CART) is used in the presence of a

weak signal. In this setting, the larger MSE is attributed
to LOOCV’s increased variance.

3. 10-fold CV prediction error estimates approximate
those of LOOCV in almost all settings. For com-
putationally burdensome analyses,10-fold CV may be
preferable to LOOCV. Additionally, in the simulated
data, repeated resamplings (the average of 10 repeats)
reduce the MSE, bias, and variance of10-fold CV.

4. The .632+ prediction error estimate performs best
with moderate to weak signal to noise ratios.Pre-
vious studies have found the bootstrap variants superior

Table 5. Resampling with and without Replacement. The leave-one-out bootstrap and 3-fold MCCV estimate (col 3), standard deviation (col 4), bias (col 5),
and MSE (col 6), over 3 samples sizes and 4 algorithms. Feature selection was used to select the top 10 ranked genes byt-tests.

Leave-one-out Bootstrap 3-fold MCCV
n Alg Est St.Dev(Est) Bias MSE Est St.Dev(Est) Bias MSE

LDA 0.331 0.075 0.252 0.072 0.242 0.101 0.164 0.035
DDA 0.337 0.075 0.177 0.044 0.270 0.072 0.110 0.022

n=40 NN 0.259 0.072 0.217 0.055 0.167 0.083 0.125 0.022
CART 0.414 0.065 0.296 0.114 0.377 0.085 0.256 0.094
LDA 0.07 0.063 0.043 0.004 0.044 0.053 0.017 0.002
DDA 0.146 0.058 0.074 0.008 0.104 0.058 0.033 0.003

n=80 NN 0.046 0.056 0.036 0.003 0.022 0.043 0.012 0.001
CART 0.098 0.047 0.057 0.006 0.062 0.039 0.020 0.002
LDA 0.032 0.033 0.011 0.001 0.026 0.026 0.005 0
DDA 0.088 0.045 0.036 0.002 0.068 0.043 0.016 0.001

n=120 NN 0.016 0.030 0.007 0 0.012 0.023 0.003 0
CART 0.048 0.025 0.022 0.001 0.038 0.022 0.012 0.001
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to LOOCV andv-fold CV; however, these studies did
not include feature selection. As seen in Table 1, honest
resampling in small samples with strong signal sug-
gest that LOOCV and 10-fold CV are in fact better
than the.632+ bootstrap. This discrepancy fades when
feature selection is discarded (Table 4) and when the
signal decreases as seen in the Lymphoma and Ova-
rian data sets (Tables 2 and 3). Additional glimpses into
the bootstrap estimate (Table 5) indicate that the samp-
ling with replacement increases the MSE and bias sub-
stantially over 3-fold MCCV (i.e., resampling without
replacement).

5. MCCV does not decrease the MSE or bias enough to
warrant its use overv-fold CV.

6. As the sample size grows the differences among the
resampling methods decrease. Additionally, as the signal
decreases from strong in the simulated data to rather
weak in the ovarian data the discrepancies between the
methods diminish.

In future work we will compare the resampling methods
for continuous outcomes and continue to explore the behavior
of the bootstrap estimates. Additionally, the effect of feature
selection method may play an important role in prediction
and needs further investigation.
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